Interview with Rupert Sheldrake

Rupert Sheldrake – Born: Newark-on-Trent, Notts, United Kingdom, June 28, 1942

Position: Fellow of the Sausalito, California Institute of Noetic Sciences, an independent research center studying consciousness and the nature of the mind.

Biography: Ph.D. in biochemistry as a Clare College research fellow. 1967-1973, director of studies in biochemistry and cell biology. 1970-1973, Royal Society fellow at Cambridge. 1974-1978, principal plant physiologist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderabad, India, and a consultant there until 1985. Frank Knox fellow, Harvard University fellow. Married to Jill Purce, with two sons; lives in London.

Sheldrake is quite well known in the United Kingdom as a maverick biologist because of his outspoken views on the nature of reality and, in particular, phenomena that are not usually considered “real” by science, such as the behavior of animals before an earthquake. His theory of morphic resonance, which he describes as “the basis of memory in nature,” might, he says, explain everything from the shapes of growing trees and phantom limbs to how homing pigeons home, as well as the animal-earthquake connection. But the theory has been the object of much scorn and derision from traditional scientific quarters because of its holistic and nondogmatic approach to nature. Sheldrake empathizes more, perhaps, with Alfred Russel Wallace than with Wallace’s more famous contemporary, Darwin. He believes that biology has lost sight of its holistic roots in its eagerness to provide a reductionist explanation of life.

Sheldrake’s latest book, Dogs That Know When Their Owners Are Coming Home: And Other Unexplained Powers of Animals (Crown, October 1999), seeks to explain animal and human behavioral phenomena that are considered to be outside the domain of conventional science. For instance, many people who have ever owned a pet will swear that their dog or cat or other animal has exhibited some kind of behavior that they just cannot explain. How does a dog know when its owner is returning home at an unexpected time? Sheldrake claims that his intensive research over the last five years demonstrates a strong connection between humans and animals that lies beyond present-day scientific understanding.

How would you describe yourself?

A biologist interested in exploring areas that lie beyond the boundaries of usual research.

What first inspired you to go into your field?

A love of animals and plants when I was a child, and a father who was an amateur naturalist who encouraged and nurtured my interest.

What do you enjoy about your work?

I can work freely and follow up any leads I find interesting because I work independently. I have been exploring unexplained areas of animal and human behavior, such as the feeling of being stared at from behind, which most people brush aside. I have done over 20,000 simple trials that suggest this is indeed a very real phenomenon.

Why do you think we have this “sense”?

I think it could have a major evolutionary role to play. For instance, if a prey animal can tell when a hidden predator is looking at it without being able to see, smell or hear it, then this would have survival value. Its presence in modern human beings may well be a relic of this.

So, what’s the explanation?

Conventional science cannot explain the effect, so it has been largely ignored. My own feeling is that morphic fields are involved.

What do you dislike about your research field?

There’s nothing wrong with the field of research as such, but most scientists don’t take it seriously, and there is no whole community working on these questions, so one sometimes feels isolated. Most of the time, that’s an advantage, because it’s much more exciting to explore uncharted territory rather than simply fill in the gaps in a heavily populated area of science. But I do miss some of the excitement of having a lot of bright colleagues engaged in similar research.

What aspects of science would you change if you could?

What upsets me most about science is the closed-minded dogmatism that is all too common, which makes a lot of scientists timid and afraid to go beyond convention. This affects cosmologists and physicists a lot less than biologists. After all, you can still be a cosmologist and speculate that the universe is one of an infinite number, or postulate extra dimensions of space and time. At one time, these were considered the realm of cranks, but now you can hold down a chair in a physics department. In biology, the atmosphere has become narrower and more intolerant as molecular biology and neo-Darwinism have squeezed out the traditional, holistic approach. Biology has become rather narrow and impoverished.

When did things change?

The craze for molecular biology and the success and excitement in that field have done a lot to draw attention away from whole organisms in favor of a more reductionist approach. This began in the 1920s, and the discovery of DNA carried the process further.

What was your first scientific experiment?

I must have been about seven or eight. I was fascinated by homing pigeons. I kept some, and my first experiment was to take one of them away and release it and find indeed that it came back.

How did the experience increase your maturity as a scientist?

I had no theory of my own at the age of seven or eight. But it showed me that pigeons seem to have knowledge of where they are in the world. All the scientific explanations put forward so far have been refuted experimentally, even the notion that a built-in “compass” may be the answer – knowing which way is north, after all, says nothing about where home is. It’s a problem that has stayed with me all my life, and I have never felt satisfied when people say it is just a matter of genes, proteins, or synapses.

What was your high-school science teacher like?

My biology teacher, Robin Thoday, was very inspiring. His father was a botany professor and his brother a geneticist, and he represented the older kind of biology, the traditional biology, where one actually knew the names of plants and animals and studied ecology. His approach encouraged me to look for explanations of things that were unexplained.

Was he a role model?

Not really. He was basically a teacher, and I saw myself in a research role. In a way I saw my father as a role model; he was an amateur microscopist and had his own laboratory at home.

What is your proudest achievement?

There is not a single one, but when I was researching plant development, I discovered that auxin, the plant hormone, is made by dying cells, which sheds tremendous light on the developmental biology of plants. Secondly, in India, working out the basic physiology of the crops I was working on and finding new ways to grow them with high yields. Thirdly, the development of the hypothesis of “formative causation,” which provides a larger framework for looking at nature.

What was your most embarrassing moment?

In India, I invented a new cropping system for growing pigeon peas as a perennial, and persuaded village farmers to take this up. It was a terrible failure because the peas were killed by disease that persisted on the perennial crop, which wouldn’t have happened if the crop had been grown in the traditional way. I did arrange for the institute to compensate the farmers, though.

What advice would you give a younger scientist?

If they are interested in making discoveries, then they should explore the unexplained in biology, where no one is working at the moment. I wouldn’t advise them to go into standard molecular biology, protein sequencing, genetic engineering. On the other hand, if they want a conventional career and to earn lots of money, that would be the way to go.

In what areas do you think you need advice yourself?

I work in quite a lot of different areas. In every area, I need advice from people such as statisticians, animal behaviorists, and psychologists, who have worked there longer than I have.

What would you be if not a scientist?

I haven’t a clue. I haven’t thought about being anything else since I was quite young, and I’m delighted I’ve been able to do what I wanted to do.

Who from scientific history would you like to meet?

The evolutionary biologist Alfred Russel Wallace. He’s one of my heroes. He had a much more far-ranging mind than Darwin, and while we know exhaustively about Darwin, we know very much less about Wallace.

What would you ask him?

I’d like to ask him about the biology of Southeast Asia, where he studied extensively. He also had a very different view of evolution than Darwin; he considered there to be creative forces at work rather than just blind chance, and I’d want to know why he thought it was necessary.

Which living scientist do you most admire?

James Lovelock.

Why?

Because of his independence and his ability to think in large-scale terms and not be put off by small-mindedness and petty criticisms.

What has been the greatest scientific discovery this century?

The discovery of the cosmic background microwave radiation, which led to the Big Bang theory. This transformed our fundamental cosmology from that of a static universe, or one slowly running out of steam and gave us instead an evolutionary vision of the whole of nature.

What will be the great discoveries of the next century?

The recognition of the nonlocal effects of the mind is going to transform our notion of consciousness and open up a whole new range of discovery about animal and human nature. This liberation will make science exciting again to lots of ordinary people.

What research goals do scientists need to set themselves?

I think I’d make a register of unexplained phenomena that scientists usually reject, to open up whole new areas of research into, for instance, the restlessness of animals immediately before earthquakes. I think at least 0.1% of science funding should go toward this.

Why do you think the public fears science?

It perceives it as arrogant and, with the GM controversy, it increasingly sees it as a corporate activity with scientists as hired hands rather than following science for its own sake.

What can scientists do to overcome this?

Make it more democratically accountable to the taxpayers, so that a polling system might bring to light the questions that people would really like to see answered. If science addressed interesting questions, it would increase science’s popularity and get children interested again. Research should relate to the problems that arise in our lives. The average person isn’t terribly interested in the genetic sequence of a bacterium or the existence or nonexistence of the Higgs boson, and yet this is where all the money goes in science.

This interview appeared on October 29, 1999, in 雷竞技官网 ’s monthly BioFeedback column in the now defunct and much missed (not least for the monthly fee!) HMSBeagle on BioMedNet.

Science-Based Six Pack

It really irritated me when the USGS created a website called Sciencebase.gov. My site, the original Sciencebase.com, has existed since July 1999. All my social media hangs on that word “sciencebase”, I’ve used it everywhere! It alludes to the foundations of science and information. Anyway, now, when I search on Youtube to quickly find a video of mine, I get some BS marketing about six packs called Science-Based Six Pack. Well, you know what they can go and take a long walk off the same short pier with USGS!

Oh, and yes back in 1999 I probably could’ve even laid claim to having a bit of a six pack myself, hahaha.

This post was written in 2019 and datestamped to the origin year of the one true Sciencebase.

Adverse Drug Reactions

A statue of Asclepius. The Glypotek, Copenhagen.The Wall Street Journal reports (Jan 2, 2009) that a new collaboration between pharmaceuticals giant Pfizer and two Boston hospitals will test whether computerized patient records can boost reporting of adverse drug reactions (ADRs) making it a routine part of filling out electronic patient charts.

Some time ago (Catalyst column, ChemWeb.com, June 1998), I discussed the implications of the more than 100,000 deaths in the US each year allegedly caused by patients’ reactions to their medication – three times the number killed in car accidents. So-called adverse drug reactions (ADRs) are, estimated to be the fourth biggest killer in the US after heart disease, cancer and stroke. Recently, there has been an upsurge of interest in ADRs and calls in the US for an independent body to be established to make control of drugs once they have passed though the regulatory process easier and save lives.

That 100,000 is just a statistic of course, except for those patients and their loved ones affected. Every drug has side-effects and although they do not exist through malicious design, one can perhaps see that the drug R&D process is not perfect.

A pharmaceutical company for reasons of economics and politics cannot possibly study the effects of every putative drug on every ‘type’ of individual in the different circumstances in which it might be used. This is where medication monitoring services come in handy. Pharmacogenomics and personalised medicine that focus on each patient’s single nucleotide polymorphisms (SNPs) may remedy this. But, despite the emergence of inexpensive genomics and predictions of the $1000 genome, this is still true when it comes to administering to the elderly and children as they can be more sensitive than the proverbial adult. Moreover, in the supposedly clinically correct environment of the hospital there are likely to be even more exacerbating factors at work for each individual patient than there might be for a patient with a straightforward bacterial infection, say.

An individual’s genome may be at the root of a particular type of adverse drug reaction. As Catalyst discussed early in 1998. Ten percent of Caucasians and about two percent of Chinese people cannot metabolise the analgesic (painkiller) codeine into its active form, morphine. The drug therefore simply does not ‘work’ for them. The problem boils down to those patients lacking the gene for the liver enzyme CYP2D6 responsible for the conversion. This particular effect was discovered by Alastair Wood a clinical pharmacologist at Vanderbilt University in Nashville, Tennessee. The drug having no apparent effect might lead the GP to prescribe a higher, perhaps intolerable dose. For a Chinese person lacking CYP2D6 the result can be severe nausea.

CYP2D6 metabolises a variety of drugs in addition to codeine, for instance, the antihypertensive propranolol (Inderal), propafenone (Rythmol), for heart arrhythmia, and many of the tricyclic antidepressants. In these cases though people lacking CYP2D6 actually experience an exaggerated effect as the active form stays in their system longer.

In the hospital environment, muscle relaxants used in anaesthesia can be a particular problem for some patients, because they have a faulty gene for the enzyme, butyrylcholinesterase, that would naturally metabolise that drug. For example, succinylcholine stops patients breathing during surgery, this is fine while mechanical ventilation is continued but for some patients the apnoea does not cease and they can die. Peculiar peak concentrations of the TB drug isoniazid have been seen with some patients and have been correlated with a faulty N-acetyltransferase.

In fact, there are many, many variations in drug response that have been recognised and the pharmaceutical companies are becoming well aware of the potential for profit these variations might bring if they can develop drugs tailored to an individual’s genome. The National Institutes of Health in the US has also recognised the potential for improving medicine and is in the process of establishing a Pharmacogenetic Polymorphic Variants Resource database for genes encoding proteins that determine variations in drug responses.

Pharmacogenomics ties in closely with the reporting of adverse drug reactions, although not all ADRs are due to genes. The anti-obesity drugs dexfenfluramine and fenfluramine which are often taken in combination with phentermine – as fen/phen – caused serious ADRs in the form of major heart valve problems in 31% of patients taking the combined medication. The eventual withdrawal of the drug once the problem was widely recognised and publicly known was swift but fenfluramine had been on the market 24 years.

However, while the voluntary reporting of ADRs is fairly common within the medical profession their existence is not well known. Indeed, aside from mentioning a few cursory side effects doctors are often unaware of potentially serious reactions to particular drugs and this is compounded by the fact that all this reporting of ADRs is purely voluntary with the onus on the pharmaceutical companies. As such, there are many people unfairly affected by these drugs and there are actions against pharmaceutical companies like the lawsuit against Levaquin, Actos, etc. It took twelve years before the antihistamine drug used by countless hayfever sufferers every summer was withdrawn in preference to its safer metabolite. The major ADR of terfenadine is potentially fatal heart arrhythmia especially in users taking certain antibiotics at the same time.

A group of medical scientists led by Alastair Wood, published a paper in the New England Journal of Medicine (1998, 339, 1851) calling for an independent drug safety board to be established to keep tabs on ADRs. This body would be there to help protect patients as well as ensuring that medical practitioners were made fully aware of the putative hazards of the countless drugs they prescribe.

According to Wood and his colleagues, ADRs are a serious cause of patient morbidity and mortality. They make the point that there have been independent bodies in place to investigate the likes of plane crashes, train and major traffic incidents, chemical and radiation accidents for many years. These bodies can make recommendations to prevent similar serious episodes happening again following an accident. But, there is no organisation with responsibility for monitoring ADRs and to ensure proposals put forward following an investigation are taken on board.

The ad hoc approach to reporting of ADRs and reactions to drug products seems at odds with the fact that we have Internet and information technology available. Wood and his colleagues say that for all this technology it is remarkable that little use is made of it for drug surveillance to help avoid the huge numbers of deaths that occur. The likes of terfenadine and phen-fen which do end up being withdrawn by the FDA are few and far between and the evidence on which the decision is based while strong is not often in the form of formal statistical analysis. One of the problems is that the US Food and Drug Administration (FDA) does not have the resources to carry this out nor is it in the interests of the pharmaceutical marketers to gather such data.

Wood and his colleagues believe that the solution to the problem is to make this surveillance obligatory through the creation of a body independent of the agency that carries out drug approvals – the FDA. A second, independent body would help avoid conflicts of interest, in that the FDA would not have to investigate problems with drugs it had approved! In their paper in the NEJM the authors state,

We must expect that predicted and unpredicted adverse events from drugs will continue to occur. If we accept that the true safety profile of a new drug is dependent on the experiment that necessarily follows the drug’s release into the marketplace, then we must fund and implement mechanisms to ensure that the experiment is properly monitored, the data appropriately analysed, and the conclusions disseminated rapidly.

Clinical trials can involve a few thousand people, once approved, millions may take it soon after especially now that TV marketing is available in the US to the companies.

Not all ADRs are lethal, just adverse, and some are simply unavoidable because of the individual circumstances in which a drug is administered. They may be unpredictable and unavoidable in some cases but once an ADR occurs the medical community should be made aware of the risks as soon as possible so that better judgements about prescribing a drug can be made and ADRs pushed right down that list of causes of death.

This original version of this article appeared in my Catalyst column in ChemWeb’s The Alchemist in March 1999 before Vioxx, pre TGN1412, and only the intro has been updated January 2009.